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Cover: Repeated load plate bearing test rig set up for
pavement testing. (Photograph by Robert A.
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REPETITIVE LOADING TESTS ON
MEMBRANE-ENVELOPED ROAD SECTIONS
DURING FREEZE-THAW CYCLES

N. Smith . R.A. Eaton and JM.  Stubstad

INTRODUCTION as does the section in the controlled environment facilit y .
An additional section on the access road containing silt

The U.S. Arnìy Cold Regions Research and Engi- with lime and tlyash without a membrane envelope pio-
neering Laboratory (CRREL) in Hanover , New vides comparative data on open system freezing and
Hampshire, has been conducting contro lled environ- thawing strengths.
ment freeze-thaw experiments on membrane-enve loped The use of membranes to preserve the high strengt h
road test sections for the past several years. The test of tine-grained soils compacted at optimum or slightly
facility and associated experimental equipment were below optimum moisture content is well established for
described in detail by Eaton et al.5 non-frost environments. 3 14 The questions concerning

During the same time period, severa l types of road moisture migration during freezing and subsequent
test sections have been constructed and monitored for strength loss during thawing in such systems have only
perforniance throughout the year in an outside environ- partial ly been answered by laboratory exper:nients. 1 ~ ‘~ 10

ment. The construction and performance of an ex- These full-scale test results demonstrate further t lv’
periniental access road at CRREL in Hanover and a viability of the membrane envelope concept and pro~tde
road test section near Fairbanks . Alaska . were docu- additional data for the development of a rational design
mented by Berg and Eaton 2 and Smit h and Pazsint.° method for flexible pavements using this concept in

The objective of this paper is to present the results cold regions.
and analyses of repetitive plate bearing tests conducted
on a silt MESL (membrane-enveloped soil layer) road
test section (Fig. 1) during two freeze-t haw cycles in FREEZE-THAW SYSTEM
the contro lled environment facility and on three silt
MESL test sect ions in the CRREL access road (Fig. 2) A controllable rate of frost and thaw penetration is
during a winter and spring freeze-thaw period. Two of provided by a special re frigeration-heating unit (Fig. 3).
the three access road test sections have additives mixed The system can simulate freezing and thawing cycles ,
with t h e  silt — sodium chloride in one and lime with thereb y allowing comp letion in weeks or months of
flyash in the other. The third test section has plain silt , pavement testing that would require years under natural

conditions. Natural ire ~/ing and t hawing conditions at
‘77//////////// ~ 

Pavsmint y/////////~~ 
t he pavement surface can be simulated on a yearly or

Top N.mbrani — daily basis. It is also possible to interrupt the progression
Aspt~aIt (polyptopylsn. ) of freezing or thawing at any particular depth to allow
Siot•, testing of

. the pavement.
The pavement is hedted or cooled by placing heat

transfer panels (Fig. 4) on the surface of a test section
Soil that has been covered with a thin layer of wet sand to

ensure intimate thermal contact. A 50/SQ solution of
et hylene glycol and water is the working medium that

Bottom M.mbten. transf ers heat between the panels and the refrigeration-
(poly.thylsnl) heating unit. A two-stage semi-hermetic compressor

provides a total re frigeration capacity of 29 .000 Btu/h r
Figure 1. Typical MESL (membrane-enveloped at a —45°F evaporator temperature. For thawing, the
wil layer) sectIo n (not to scale) . solution is heated by a 21-kW electric immersion heater .
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a. First Freeze/Thaw Cycle b. Second Freeze/T haw C ycle
Moisture Content (%) Moisture Content t%)
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Figure 6. Frozen in-situ moistures and densities in controlled
Moulton pit silt MESL.

Temperatures across the bottom surfaces of the panels folded over the top surface and covered with a poly-
vary no more than 3°F for either mode. The solution propylene membrane to give added protection during
is circu lated by a 5-hp impeller pump. paving with two 2-inch courses of AC-20 asphalt cement

The unit has two types of te~mperature control , set concrete. ’3 The grain size distribution and compaction
point and programmable. In the set point mode, the curves for the silt are shown in Figure 5. The moisture
unit maintains t he specific set temperatu re by alter- and density measurements for comp letely frozen soil
nate ly heating and cooling. In the programmable mode , core samples obtained during the first and second
a cam-type temperature programmer regulates pane l freeze-thaw cycles are shown in Figure 6.
temperatures as a function oltime. Cam programs The compaction control test used by the U.S. Army
simulating daily fluctuations or long-term variations in Corps of Engineers4 is the modif ied version of AASHO
surface tem perature are possible. The programtiier unit (American Association of State h ighway Otlicials)
is ai~o equipped with hold and reset capabilit ies to per- method TI 80, and y-nn fyir,ns ~nti reI y In ASTM (Ame n .
mit testing during a freeze or thaw cycle , can Society for Testing and Materials ) designation

These temperature control capabilities allow I) very Dl 557. The Corps-desig naled CE-55 test consists of
show frost penetrations , which allow the greatest 55 blows per layer on cacti of live layers with a 10-lb
amoun t of moisture to be drawn to the freezing front hammer falling 18 inches. In developing relationships
(a very adverse frost heaving situation), or 2) rapid for density and CBR (California Bearing Ratio) with
frost penetration for quick freezing of materials with moisture content at lesse r compactive e fforts the CE-
limited moisture migration and heave. Five to six 12 and CE-26 (12 and 26 blows per layer) compaction
freeze-t haw cycles per year (including testing) to tests are conducted.
depths up to 4 feet are possible with this equipment ,
depending on soil properties and moisture contents. Outdoor sections

Three MESL road test sections were constructed in
the CRREL access road using silt from the same source.

CONSTRUCTION MATERIA1~S Two of the sections had additivies mixed with the silt
(6~ 14 NaCI in one and 3% lime with 6% flyash in t he

controlled environment test section other) to evaluate their potential to retard freezing and
A 12 x 20 x3-foot -deep silt MESL section was con- moisture migration during freezing. Gradation curves

siructe d using 6-niil polyet hylene as a waterproofing and laboratory properties of the silt with the additives
membrane. The silt was placed in approximatel y 6-inch are shown in Figure 5. A thin layer (about ~ inch) of
layers , each of which was compacted with a I0.ton concrete sand (Fig. 5) was spread on the bank run gravel
tandem-wheeled steel roller and hand-operated vibra- befo re the polyet hylene membrane was placed. The
tory compactor . The polyethylene membrane was moisture and density measurements from frozen soil

core samples of these sections are shown in Figure 7.5
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Figure 8. Repetitive plate bearing apparatus.

TEMPERATURE MONITORING Power requirements are supplied by a 7.5-kW , 1 20/
INSTRUMENTATION 240-volt electric generator driven by an air-cooled

gasoline engine installed inside the trailer. Hydraulic
Copper-constantan thermocouples were installed in rams located at each corner of the trailer are used to

the test sections after the encapsulated soil was in place lift the trailer wheels off the test surface. Each ram
and prior to placement of the top membrane. Two has an 18-inch-square aluminum foot plate which is
vertical arrays were placed in each section in soil core connected to the ram via a removable pin.
sampling holes. Spacings for the thermocouples were The plate bearing load actuator is a two-chamber
such that the location of the 32°F isotherm could be pneumatic-hydraulic pressure transformer. To generate
determine d during the freezing and thawing of the the plate bearing load pulse, an air pressure pulse of
section. For the controlled environment sections , ad- approximately 80 psi is supplied to the upper chamber.
justments to the refrigeration unit to provide the re- The lower chamber , which is filled with ethylene glycol ,
quired freezing rate (about I inch/day) were determined converts this pressure pulse into a 9000-pound-force
by the thermocouple readings. An automatic recorder pulse. A load cell installed between the lower chamber
sampled the thermocouple outputs at preselected inter- and the load plate provides a continuous readout of the
vals. force transmitted,

A 14 .4-ft ‘/min two-stage air compressor driven by
an electric motor supplies compressed air for the load

REPETITIVE PLATE BEARING (RPB) actuator. A two-way air control valve actuated by a
TEST APPA RATUS solenoit~ generates the compressed air pressure pulse.

A soli~ ~tate timer regulates the motion of the air con-
The CRREL repetitive plate bearing test vehicle trol valve . The timer circuit is adjustable to allow varia-

(Fig. 8) is a self-contained, trailer-mounted pavement tion in the duration of the pressure pulse and the
testin g apparatus which is capable of conducting repeti- elapsed time between pulses. The duration is continu-
tive plate bearing tests on roads and airfields with a ously adjustable between 0.2 and 20 seconds, The
minimum of set-up and take-down time, The trailer, elapsed time between pulses is also continuously adjust .
which has a gross weight of 36,000 pounds, is 27 feet able between 30 repetitions per minute and I repetition
long, 12 feet high and 8 feet wide. The axle load of the every 3 minutes. The number of load pulses during the
trailer has been designed to be 18,000 pounds so that test is automatically recorded.
this vehicle can also be employed to conduct standard Flow restrictors with adjustable needle valves in-
Benkelman beam static rebound tests, stalled in the supply and exhaust lines of the 

load7
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actuator allow adjustment of the rate of pressure rise moduli based on past experience and published reports
and pressure re lease of the load actuator , This ad- of similar tests were used to calculate surface deforma-
jus tment is needed to enable a standardized load pulse tions at the radii of field-measured resilient surface
to be used at test sites wit h different response stiffnesses. deformations. Usually, after 20 to 30 trials there was

Linear variable differential transformers (LVDT’s) good agreement between the measured and calculated
are used to monitor the motion of the 12-inch-diameter resilient surface deformations , meaning that the correct
loa d plate and the surface deflection basin. The dc-type moduli had been determined. For these calculations
LVDT’s are mounted to an 18-foot reference beam and the Poisson’s ratio values were assumed constants,
are positioned wit h two on the load plate on perpen- usually ranging from 0.35 for frozen materials to 0.4
dicuiar radii and four in the surface deflection basin I or thawed.
aligned with one of the plate LVDT’s (Fig. 9). A The resilient deformation moduli determined by
strip-chart recor der monitors the LVDT and load cell trial and error produced computed surface deflections
outputs. within ± 5Y~ of the measured values except in a few

instances where t he measured values were suspect.
Figure 10 shows the typical trend of measured and

TEST RESULTS AND ANALYSES computed surface dellections during a freeze-thaw
cyc le. The Chevron program used in these analyses was

The resilient surface deformations after 500 load limited to a five-layer system with layer thickness being
repet itions were used in the elastic layer analysis. The selected to match thaw conditions. In general, the first
resi lient stiffness values we re calculated for the entire soil layer under the asphalt cement concrete has to be a
pavement system using the load in kips and the thinner, weaker layer than like material deeper in the
resilient plate deflection in inches after 500 load repe- section to match the measured deflections. Typically
titions. Surface deformation and calculated stiffness the five-layer system consists of the asphalt cement
are presented in Tables I-Ill, concrete , two t hawed layers for deep thaw, a frozen

Using the Chevron 5-layer elastic analysis 12 IS t he layer , and the subgrade.
resilient deformation modulus of each pavement layer Figure 11 illustrates the nearly six-fold decrease in
was determined by trial and error. Computed moduhi the resilient deformation stiffness as the controlled test
are presented in Tables IV-VI. The thicknesses of the sections changed from frozen to thawed. Figure I 2
various pavement layers for each thaw condition along shows a similar trend for the outdoor MESL sections
with the test load constituted the input data. Trial exce pt for the sodium chloride stabilized section which8
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Table I. Resilient surface deformations and resilient deformation stiffness of Moulton pit silt MESL
test section — first freeze-thaw cycle.

Resilient
Load stiffness

Free:e.rhaw conditions (Ib) Deformation (in.) - Offse t from center of) 2.in.-diam load plate (in.) (kipsf in.)

Before freezing 9125 0.0294 6.0’ 0.0219- 1 ) 75 0.0179- 15.0 0,0149- 18.25 0.0098-24.0 310.4
Before free zing 9500 0.0262- 5 .75 0 .0 186- 12.5 0.0154-1 5,5 0.01 28-1 8.75 0.009 i-2 1.25 362 .6

Completely frozen 8750 0.0046-5,25 0.0033-i 1.5 0,0026-14 ,5 0.0023-17. 75 0.0019-23.5 1902.2
Completel y frozen 9000 0.0046-5 .375 0.0030-10.5 0 .0024 -13,75 0.0020-i6 .75 0.0016-22 .5 1956.5
Completely fr oz ent 9375 0.0110 -5 .5 0,0060-10.5 0,0046-13.75 0.0037-16.75 0.0025-23.0 852,3
6-in. MESL thaw 9000 0.0 126 -5.5 0.0087-11. 5 0.0066-14 .75 0.0057-17.75 0.0037-23.75 714.3
9-in, MESL thaw 9000 0 .0 165-5 .5 0 .0 110-11.0 0.0079-14 .25 0.0066-17.5 0.0041-23.25 545. 4
12- in.  MESL thaw 8875 0 .0 183-5 .5 0.0127-I 1.5 0.0095-14 ,25 0.008117 .125 0,0052-23,375 485 .0
15-in. MESI thaw 8875 0 .0195-5 .5 0.0135-i i , 25 0.0103-14 .25 0,0084-i7 . i2 5 0.0050-23.375 4 5 5 .1
22-in. MESI, thaw 9000 0.0 199-5 .75 0.0147-10.25 0,0101-16,5 0,0068-22.5 452.3
Complete MESL thaw 8875 0.0248-5.25 0,0 175-1 1 .0 0.0129 -14 .5 0 .0 108-17 .25 0.0069-23.25 357 .9

I wk after thawing 9000 0,0229-5.5 0,0i64-i 1.25 0 .0 127 -14 .25 0.0106-17.25 0.0070-23.25 390.0

Example: 0.0294 in. deformation — 6.0 in. offset.
f AC-20 above 32° F.

Table II. Resilient surface deformations and resilient deformation stiffness of Moulton pit silt MESL
lest section — second freeze-thaw cycle .

Resilien t
Load stiffness

Freeze-thaw conditions (Ib) Deforma tion (in.) — Offset from Center of ) 2-in.diam toad plate (in.) (kips/in.)

Before freezing 9000 0.0394-5.5 0 .02 19-11.5 0.0143- 14,75 0.0097-17.75 0.0046-23.75 228. 4
Comp letely frozen 9000 0.0051-5. 375 0.0030.10.5 0.0023 -13.75 0.0021-16.75 0.0016~22.5 1740.2
Comp letely fro zen 9000 0.0071-5.75 0.0040-11.75 0.0029-15.25 0,0024-19.0 0.0014-24 .25 126 7 .6
I-in, MES L thaw 9000 0.0 i03-S.75 0.0064.12.0 0.0047.15.25 0.0039-18.815 0.0028-24,375 837.8
s- in. Mr.sL tnaw 8~~JS 0,0130-5,75 0.0098-11.5 0.0069-14.25 0.0055-18 .0 0.0037-23.5 649 .6
12-in. MESL thaw 9000 0 .0188-5 .5 0.0 138- 11.5 0.0097-14 .75 0,007S~i7 .75 0.0053.23.25 478.7
li-in. MESL thaw 9000 0.0229- 5 .5 0.0161-11 .0 0.0110-14 .25 0.0088-17.5 0.0056-23.5 393.0
20-in. MESL thaw 9000 0.0248-5 .5 0,0167-1 1.25 0.0126-14 .5 0,0101 17.5 0.0062-23.5 362.9
Complete MESL thaw 9000 0.0303-5,25 0.0207 -11 .25 0.0143-14 .5 0,0 110-17 .625 0.0064-23.5 297.0
3 wk after thawing 9000 0.0293-5.875 0.0193-12.0 0.0 128-15. 75 0,0097-18.25 0.0054-24.5 307.2

held nearly constant because of little or no fro zen pore salt-stabilized silt sections (G and F). Figure 12 also
water. Some stiffness decrease in all sections during shows the sma ller st rength gain of the salt.stabihzed
thawing can be attributed to an increase in the tern- silt during the extreme low temperatures. The greater
perature of the asphalt concrete. resilient stiffness in February is considered to be due

Figure 13 illustrates the Benkelman beam detlections to a lower asphalt pavement temperature. In general,
during two thaw periods. Resilient stiffness values from the frozen moduli are lower in the outdoor sections
the maximum deflections are plotted in Figure 12. The than in the controlled environment , probably because
plain silt section (G) had the greatest deflection of the of the lower water content in the outdoor sections.
three MESI sections. The non-encapsulated section,with
lime/fly ash stabilized silt (1), had the greatest deflection Figure 14 shows a decrease by an order of magnitude
during the first thaw season. However, by the third in the resilient modulus with increased temperature for
thaw season it had gained a strength, presumably with the AC-20 asphalt concrete. The plain AC-I .5 asphalt
the curing of the additive, greater than the plain and concrete shows an eight-fold decrease in resilient modulus
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Table Ill . Resilient surface deformations and resilient defo rmation stiffness of access road MESL test sections.

Resilient
Load stiffness

Section Thaw condition (Ib) Deformation (in , I - Offset from center of! 2-in. -diani load plate (in.) (kips/in.)

F:NaCI- Partially frozen 8750 0.0354-5.875 0 .0133 -1 2. 125 0.0081-18.375 0.0054 -18.375 0.0030-24 .0 247.2
stabilized 24 Feb 76
silt MESL Completely thawed 8500 0.0610-5.5 0.0250- 11.5 0 .0 151-1 4 .75  0 .0 110- 18 .25 139.3
w/ AC -i .5 29 Mar 76
cone Comp letely thawe d 8750 0.0497-5.75 0.0270-10.0 0 .0 162 -1 3 .25 0.0109-16.375 0.0072-22.625 176.1

29 Apr 76
Completely thawe d 8750 0.0549-5.37 0 .0 184-11.25 0.0110-14.2 : 0.0079- 17.25 0.0047-23.0 159. 4
2 June  76

G:silt Partially frozen 8375 0,0098-5.5 0.0047-i 1.5 0.003714.5 0.003117 .75 0.0025.23.5 854 .6
ME SL 24 Feb 76
w/ A C-l.S Comp letely thawe d 8500 0.0968-5.875 0 .0552 -1 2 .5 0 .04 13-15 .5 0.0289-19 .0 0.0160-24 .5 87.8
cone 29 Mar 76

Comp letely thawe d 9000 0 0683-S.i 25 0.0373-10.25 0.02 14-1 3.75 0,0145-I 6.75 0.0078-23.25 13 1 .8
29 Apr 76

Completely thawed 8500 0,0679-5,75 0.0253-11.0 0 .0107 -17 .75 0.0067-23.5 125 . 2
29 June 76

H:Lime / Partially frozen 8625 0.0037-6.25 0.0030-11.5 0.0024-14 .5 0.0022 -17.75 0.00 19-23.75 1287.3
fly ash- 24 Feb 76
stabilized Completely thawed ’ 8625 0.0327-6.0 0.0196-12.0 0 .0148 -15.25 0.0124 -1 8.25 0,0091-24 .25 263.8
silt MESL 29 Mar 76
w/AC- l.5 Completely thawed 9000 0.0209-5.25 0.0140-10. 375 0,0105-14 .0 0.0083- 17.25 0 .0054-23.5 430 6
con e 29 Apr 76
(asbestos- Comp letely thawe d 9000 0.0220-5.75 0 .0 126-11.5 0.0095-15.0 0.0075-18 .0 0.0048-23.5 409 .1
stabilized) 2 June 76

‘ AC- l.S at 27°F.

Section:::~~ O.l2~ (‘ 

a. 1974.

Jon Feb Mor Apr f May Jun

0.12

.! ooe ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
b 19757976 

.

C, _____________________________________________ Figure 13. Benkelman beam deJlecrions
Dec M~ Apr May Jun Ofl Moulton pit silt MESL (access mad) .
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Table IV . Resilient deformation moduli for Moulton pit si lt MESL test section — first freeze-thaw cycle.
Mr resilient modulus, p = Poisso n ’s ratio from analysis.

Layer I Layer 2 Layer 3 l.a per 4 Layer 5
5-In, A C.20 concrete M E S L  silt MFSI. nh .tIFSL silt sil t subgrade

I-’ree:e-llia w ~~
‘ 

‘5’r ~
• 

~~ ~ ~~r T
cond,tioii ( ‘I ’)  (lO s 

PSI) p (“F) ( lO s psi) p ( ‘F) (IV ~ psi) p ( F) (JO psi) p ( F) (JO psi) p

6-in. MESL IS-in . MESL IS-in. MESL
Before free/ mg 300 0.4 4 .5 0.4 6,0 0.4 7.0 0.4 30.0 0.4

4 1 440 0.4 48 4 .o 0.4 50 s~.5 0,4 51 7.35 0.4 45 41.0 0.4

12-in . MESL Ill-in. MESL 14-in. MESL
Completel y 30 1 300 0.35 23 55 0.35 21 340 0.35 26 450 0.35 32 29 .5 0,4
frozen 30 900 0.35 23 65 0.35 2 1 340 0.35 26 460 0.35 32 37 .5 0.4

12- in . MI-.SL 10-in. MESL 14-in. ME SL
A(’-20 cone 35 185 0.4 28 26 0.35 26 240 0.35 28 320 0.35 32 26.5 0.4
above freezing

6-in. MESL 14-in. MESL 16-in. MESL
6-in. MESL 42 600 0.4 36 7 .0 0.4 31 40 0.35 31 55 0,35 32 30.0 0.4
thaw

9-in. MESL 1 3-in. M}SL 14-in. MI-SL
9-in. MESL 46 370 OA 38 6.9 0.4 31 47 0.35 31 53 0.35 32 32.3 0.4
thaw

12-in . MESL 12-in. MESL 12-in. MESL
12-in. MESL 48 360 0.4 30 6.8 0.4 31 49 0 3 5  31 56 0.35 32 24 .9 0.4
thaw

1 6-in . MESL 10-in. MF.SL 10-in . MESL
1 6-in. MESL 50 365 0.4 38 6 .5 0.4 32 40 0.35 31 52 0.35 32 41.0 0.4
thaw

4-in. MESL IS-in. MFSL 14-in. M1’SL
22-in. MESL 48 330 0.4 44 4 .0 0.4 36 20 0.4 31 30 0.35 32 19 .0 0,4
thaw

3-in. ’ AC-20 co n cre t e 4-in. MESL 18-in. MESL 14-in. ME SL
22-in. MESL 47 710 0.4 45 6J 0.4 37 30 04 31 40 0.35 32 11.5 0.4
thaw

3-in. AC-20 concrete 7-in. MESL IS-in. MESL 14- in. MESL
Complete MESL 49 700 0.4 45 S .6 0.4 37 25 0.4 32 39 0.35 32 11 . 9 0.4
I haw

3-in. AC-20 con c rete 12-in . MESL 12-in. MESL 12-i n. MESL
I wIn after 50 710 0.4 52 9 .2 0.4 48 50 0.4 45 60 0.4 40 10.0 0.4
MESL inawlng J ___________________ J ____________________ ____________________ 

__________________

Three tesl s run at different location wi lh thinner pavement.

but the results for the same concrete with the asbestos average thawed modulus value for the outside environ-
additive suggest a possib le stability of ’ t he resilient ment subgrade was about 20,000 psi and the partially
modulus in the temperature range of 40 to 100°F. frozen value was about 42 ,000 psi.

The modulus values for the silt subgrade below the Indications in Figure IS are that the thickness ot
MESL in the controlled environment sect ions ranged the thawed layers used in the Chevron program has no
f rom 10 ,000 psi to 58 ,000 psi for the two freeze-thaw e ffect on the resilient modulus of ’ t he first layer be-
cycles. The lower values we re calculated for deep and neath the pavement (layer 2) in the thickness range of
complete thaw conditions on the tirst freeze-thaw cycle I to 20 inches. The absence of moisture migration in
and probably re flect a higher soil moisture content. A the MESL soil as seen in Figure 6 would lead one to
modulus value of 30,000 psi was the average for the un- accept this as reasonable. There is much scatter in
frozen silt subgrade at a moisture content of about 17% the values for the second layer beneath tile pavem ent
(Fig. 6b). Jones and W itczak 6 have also indicated (layer 3) but a slight tendency for higher values with
high variations in subgrade nioduli between and greater thickness exists , The values for the layer on the
within test sections on the San Diego test road. The subgrade (layer 4) tend to be higher for lesser thickness,
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Table V. Resilient deformation moduii for Moulton pit slit MESL test section — second freeze-thaw cycle.
M1 res ilient modulus . p = Poisson ’s ratio from analysis.

Lacer / La cer .2 Lacer 3 J.av ~-r 4 1.a’.’er 5
5.in. AC’-20 concrete ML’SL silt _,~~U-Sl. .oU 3IFSI. silt silt subgrade

Freeze-thaw 7’ Mr 7’ ~
t r 1 Mr T ‘t1r ‘r

(,mdinon ( 1’) (/f ) 3 psi) p f I’) (JO y 
~~3~) ~ (~F) (10~ psi) p (~‘F) (It) 3 psi) p (1”) ( J O ~ pci) p

I 2.-in . M1’SL 12-in. MI’SL I 2.in. MESL
Before freezing 76 90.0 0.4 72 4.0 0.4 66 20. 0 0.4 61 42.0 0.4 59 32.0 0 . 4

6-in. MESL IS-in. MESL IS-in. MFSL
Comp letely 30 480 0.35 10 50.0 0.35 IS 200 0.35 29 300 0.35 34 38 .0 0.4
frozen

6.in. MESL 16-in. MFSL 14-i n . MI-SI
AC-20 cone 32 350 0.35 27 25 0.35 24 80.0 0.35 30 I SO 0.35 33 58 . 0 0.4
above freezing

I-in. MESL 20-in. MESL IS-in. MESI
I- in. MESI 35 380 0.4 32 5.0 0.4 28 40.0 0.35 31 60.0 0.35 33 35 .0 0.4
thaw

5-in. MESL 25.in.MESL 6-in. MFSL
5-in. MES L 42 450 0.4 35 4.0 0,4 30 55 .0 0.35 32 70 .0 0.4 33 32.0 0.4
thaw

12.in. MESL 18-in. MF SL 6-in. MI-SI
12- in . MFSL SO 300 0.4 42 7.0 0.4 3 1 60.0 0.35 33 65.0 0.4 33 22 . 0 0.4
1h~w

17-in. MESL 12-in. MI-SI 1-in . M I-:SL
1 7-in . MESL 51 300 0.4 42 6.0 0.4 31 110 0.35 33 160 0.4 34 30.0 0.4
thaw

20-in. MI-:SL 8-in. MESI 8-in. MESL
20-in. MESI S3 280 0.4 44 6.0 0,4 31 ISO 0. 35 33 100 0.4 34 30.0 0.4
thaw

14-in. MESL II.in. MESL Il-in. MESL
Comp lete MESL 59 200 0.4 52 4.0 0.4 36 28.0 0.4 33 100 0.4 34 3 1 .0 (1.4
thaw

12-in. MESL 12-in. MESL 12 . in .  MESL
3 wIn after 64 180 0.4 62 4.0 0.4 59 16. 0 0.4 56 38.0 0 .4 55 39.0 0.4
MESL thawing

r
2000 — A A A

600 — Typ es of
Aspha lt Cement Concrete

0
( . )  AC-20

~ 1 200 — t~~ A C- l .5
A tA) AC-I.5

wit h asbes tos
C
.! 800 —
a

. 00
400 — .

0
0

I 
0~~~ 0

I I 1 . 1  1 1 I
0 20 40 60 80 100 120

Temperature ( F )

Figure 14. Variation oJ resilien t dejormation ,nodu!us at asphalt
cement concrete with temperature.
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Table VI. Resilient deformation moduli for access road MESL test sections.
M1 = resilient modulus , p = Poisson ’s ratio from analysis.

l.a er I Layer 5
Section and 2-in, A C-I .5 concrete Layer 2 Layer 3 ~~yer 4 slit subgrade
Jree:e- thaw 7’ M T M 7’ M 7’ Mr 7’ Mr

condition ( ‘ F) ( J O ~ psi) p (°F~ (JO ~ psi) p ( °F)  ( / 0 3 psi) p ( °F)  ( I O ~ psi) p ( °F) (lO s psi) p

12-i n . MESL 10-in , bank run grave l 26-in , hank run gravel
F:NaCl.s ta hi . 36 340 0.4 28 8.0 0.35 32 17.0 0.4 32 22.0 0.4 33 37.0 0.4
l ized partially
frozen

12-in. MESL I 8.in. bank run gravel 18-in , hank run gravel
Comp lete thaw 35 100 0.4 43 6.0 0.4 40 8.0 0.4 35 10.0 0.4 36 37.0 0.4

- 1 2-in. MESL IS-in , bank run gravel 18-in , bank run gravel
Complete thaw 76 200 0.4 60 6.0 0.4 50 16.0 0.4 50 18.0 0.4 51 1 1 .5  0.4

12-in. MES L IS-in , bank run gravel IS-in , bank run gravel
Complete thaw 109 60.0 0.4 77 7 .0 0.4 65 13.0 0.4 55 18.0 0.4 56 23.0 0.4

6-in. MESL 6-In. MESL
G:No stabilizer 35 47 5 0.4 32 47.0 0.4 33 82.0 0.4 34 38.0 0.4
partially frozen

6-in . MESI 6-in. MESL
Complete thaw 33 S00 0.4 39 1.0 0.4 39 4.0 0.4 37 6.5 0.4

6-in. MESL 6-in . MESL
Complete thaw 7 1 250 0.4 55 4.0 0.4 55 4.5 0.4 53 12.0 0.4

6-in. MESL 6-in. MESL
Complete thaw 87 95.0 0.4 73 4.0 0.4 73 5.0 0.4 65 12.0 0.4

w/ashestos 6-in. MESL 6-in. MESL
H:Lim e/t’ ly ash 35 2000 0 4  32 200 0.4 32 400 0.4 33 50.0 0.4
stabilized
partially fro zen

w/asbeslos 6-in. MESL 6-in , ME SL
AC-l .S cone 27 1100 0.35 36 11.0 0.4 36 13.0 0.4 35 11.0 0.4
below freezing

w/aabegto s 6-in. MESL 6-in. MESL
C’nmp lete thaw 64 2000 0.4 57 16.0 0.4 57 17.0 0.4 52 19.0 0.4

w/aabeato s 6-in. MESL 6-in. MESL
Comp lete lhaw 97 2000 OA 75 12,0 0.4 75 13,0 04  66 23.0 0.4

which is probably due to a lower stress intensity at be determined from resilient surface deflection measure-
greater depth in the section. ments for repetitive plate bearing tests using the Chevron

An attempt at relating resilient modulus with tern- n-layered elastic analysis. The resilient deformation
perature in the frozen silt MESL layers is shown in modulus values for AC-20 asphalt concrete ranged from
Figure 16. Again, the values for the first layer beneath 1,200,000 psi at 25°F to 90,000 psi at 76°F. The values
the pavement seem to remain constant in the tempera- for AC-I .5 asphalt concre te ranged from 500,000 psi at
ture range of 10 to 28°F, Many of the values for the 28°F to 60,000 psi at 109°F. Additional tests on AC-
second and third layers beneath the pavement are in 1.5 asphalt concrete with asbestos should be conducted
the same range at about 3 1°F. The higher values for to determine the strength-temperature rela tionship.
these layers are probably also due to lowe r St ress Resilient deformation modulus values of thawed en-
intensities, capsulated silt ranged from 5,000 psi for near-surface

layers to 160,000 psi for layers on the subgrade. The
values for the thawed non-encapsulated silt subgrade

CONCLUSIONS ranged from 20,000 to 30,000 psi depending on water
content. The values for frozen silt ranged from about

Meaningful resilient deformation modulus values 50,000 psi for near-surface layers to 450,000 psi for
for individual layers of a layered pavement system can layers on the subgrade.
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rio,, modulus of thawed silt MESL layer modulus of J ’ozen silt MESL layer with tern-
with thickness, perature.

The resilient deformation modulus for the frozen the required compaction effort is less because the de-
encapsulated silt layers at nearly equal shallow depths gree of saturation is lower for lower densities.
below the surface is constant at about 40,000 psi in More heavily loaded pavement systems will require
the temperature range of 10°F to 32°F for these high density and low moisture content MESL’s if
relatively low moisture contents. placed near the surface, while lower density and higher

The resilient deformation modulus for the thawed moisture content MESL’s can be utilized at greater
encapsulated silt layers is essentially independent of depths or in more lightly loaded pavements.
layer thickness in the thickness range of I to 20 inches.
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